
From Naive to Native
Migrating traditional server-based applications to
the cloud and actually reaping the benefits.

Executive Summary
The rise of public cloud computing has been driven by hyper-scale online businesses like
Amazon, Netflix and Google. Their platforms were born in the cloud and their success has been in
a large part due to the flexibility and scale of cloud computing.

However, many organisations aren’t approaching cloud computing with a blank slate. They have
existing applications or customers tied to older software architectures.

These organisations tend to have lacklustre or lukewarm experiences when moving to the cloud -
failing to see the kind of benefits and cost savings they expect. In a 2019 paper from Unisys
about 39% of businesses in Australia rated their cloud migration as “below expectations”.

While re-architecting for the cloud requires more investment, the value returned over time far
exceeds the cost. Further, the cost can be spread over an extended period if you methodically
tackle the problem and adopt new technologies in a step-by-step fashion.

The Path to Value

This e-book maps out a better path for organisations who develop or use custom software to
reap higher value from cloud computing.

Traditional Server Based Applications

⬇
a quick review of existing architectural patterns in
software and some of their limitations. p2

Modern Application Patterns

⬇
a summary of modern software patterns that underpin
resilient and scalable cloud services. p3

The Application Modernisation Journey

⬇
how to progressively reap value from your cloud
investment by adopting new technologies and greater
levels of cloud maturity.

p4

Cloud Governance Strategy

⬇
how to establish scalable cloud governance that will
keep you safe, but allow you to experiment, innovate and
scale.

p8

Continuous Flow of Value

⬇
how to use automation to alleviate the ‘undifferentiated
heavy lifting’ and allow your team to focus on value
adding activities in the lifecycle.

p14

Designing for Continuous Operations enabling efficient operations to ensure the systems you
build in the cloud can be supported and maintained. p17

From Cloud Naive to Cloud Native - 1

https://www.unisys.com/Style%20Library/Unisys/cloudbarometer/pdfs/Report_UnisysCloudSuccessBarometer.pdf

Traditional Server Based Applications
Over the past 50 years the composition and nature of technology used in software applications
has changed radically. Each stage of development from mainframe, to client server to service
oriented architecture to the modern web stack has meant different tradeoffs and compromises.

While all of these may run on modern cloud infrastructure, modern cloud services have been
designed with the highly parallel, asynchronous world of web applications in mind. Using a
suboptimal architecture results in suboptimal outcomes in terms of cost, performance, reliability
and the ability to innovate quickly.

To reap the benefits of public cloud computing, owners of traditional server based software
should look to modernise their architectures in a structured way.

Common Architectural Patterns

Client-server Also n-tier or 3-tier
consisting of data, logic
and presentation tiers.

Traditionally featured synchronous comms and monolithic
applications that limit or constrain improvements due to
cross-tier dependencies.

MVC Model-View-Controller - a
specific implementation of
the 3 tier model.

Associated with GUI interfaces, separated presentation from
‘domain model’ but has become complicated and has limited
utility in other settings.

SOA Service Oriented
Architecture

Separates ‘services’ with a common message protocol or
bus to reduce coupling but often ends up hiding the coupling
in the message bus.

Web server REST
GraphQL

Developed to suit the distributed World Wide Web, with loose
coupling and lightweight messaging between services, REST
is the original web server standard while GraphQL is a newer
standard, optimised for certain use cases.

Common Technology Stacks

Lamp Stack Linux
Apache
Perl, PHP or Python
MySQL

Common web stack - simple, flexible and easy to use,
particularly with respect to the programming language
used (Perl, Python, PHP). Often still requires JavaScript to
implement web front end, which adds complexity.

Ruby on Rails Ruby / Rails
SQL database
(Apache Web Server)

An MVC implementation which uses Ruby (a python like
language) and the Rails framework to implement “CRUD”
operations against a database.

WAMP
WIMP
WINS

Windows
Apache
.NET
SQL server

A version of the LAMP stack, replacing Linux with
Windows and the P-languages with Microsoft’s .net
framework and a language like C#, VB or J#.

MEAN
MERN
MEVN

MongoDB
Express.js
Angular/React/Vue
Node.js

JavaScript based stack with a MongoDB noSQL database
replacing the SQL component of a LAMP/WAMP stack.
Angular, Node, React & Vue are all JavaScript frameworks.

From Cloud Naive to Cloud Native - 2

Modern Application Patterns
With the rise of ubiquitous compute resources in the form of public cloud services, a number of
new patterns for software architecture have developed. Exemplified in the hyperscale web apps
or Software-as-a-Service platforms they are surprisingly simple and flexible.

The philosophy which underpins modern software architectures is the 12-Factor App
methodology. This highlights the key principles for building distributed software services that are
scalable, resilient and efficient.

The implementation of these principles can be achieved with the following architectural patterns:

Microservices Database per Service
Saga
Event Sourced
Service Mesh

The rise of internet scale services (like Netflix or Amazon) gave
rise to architectural patterns where applications are distributed
over many small services, that scale horizontally and can be
developed independently by different teams.

This leads to some challenges but typically provides faster
development, better resilience and agility.

Serverless/FaaS AWS Lambda
Azure Functions
Google Cloud Functions
Open FaaS

One way to implement microservices is using a cloud based
“Function as a Service” model. This uses ephemeral compute
resources to run functions on-demand. It is extremely cost
efficient with minimal overhead and incredible flexibility.

Containers Docker
AWS ECS on Fargate
Kubernetes
AWS EKS
Google GKS
Apache Mesos

Building on the success of “virtual machines” to provision
hardware, containers are an abstraction that includes the
run-time an application requires. This means that the same
container which runs on a developer’s laptop, can run on a
cloud server, or a cloud orchestration platform like Kubernetes.
This makes deployments easy, reliable and scalable.

Data stores MongoDB
DynamoDB
AWS S3
Neptune
MariaDB
Redshift
BigQuery
Snowflake

Traditionally data has been stored in SQL databases for the
optimal performance of specific types of access.

But as more types of data became common and compute
prices have fallen, different types of data store have been
developed optimised for different use cases.

Unstructured data, network databases, object stores and data
warehouses have come to dominate in places other than OLTP
where SQL still reigns supreme.

Front-end clients
& API frameworks

Progressive Web App
Javascript frameworks
Web Assembly
GraphQL
React Native
CDNs

Content Delivery Networks (CDNs) offer global scale and
availability for web applications at the fraction of the cost of
traditional server hosting.

Modern JavaScript frameworks, like React, are designed with
this in mind to support rich interactive user experiences.

WebAssembly (Wasm) is a new standard offering a modern
web architecture using alternate languages, such as C#.

Progressive Web Applications (PWAs) offer similar functionality
to native mobile applications without the overhead of separate
code bases for web, desktop and mobile.

See also: Microservice Architecture patterns

From Cloud Naive to Cloud Native - 3

https://12factor.net/
https://microservices.io/patterns/microservices.html

The Application Modernisation Journey
In general there are six choices when migrating applications to the cloud.

For custom built software, only three of them usefully apply:

1. Rehost in the cloud using the same processes and technology as on-prem;
2. Replatform by automating some of the underlying services or using managed services;
3. Rearchitect the application to take advantage of higher levels of cloud maturity.

Ultimately the choice is based on the return on investment you wish to realise.

While re-architecting for the cloud requires more investment, the value returned over time far
exceeds the cost. Further, the cost can be spread over an extended period as you break apart the
problem and adopt new technologies in a step-by-step fashion.

The next section of this e-book lays out a methodical approach to modernising your application
or software in the cloud.

From Cloud Naive to Cloud Native - 4

https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/

Technology Adoption Roadmap

It is important to learn how to manage your application effectively in the cloud before attempting
to re-architect and optimise. By gathering data as you go you will be able to make the most
effective decisions about how and where to optimise your architecture.

A serverless, cloud native, system is recommended for the long-term target architecture in order
to minimise the total cost of ownership (TCO) and maximise reliability and development velocity.

The first step in the journey is to enable repeatable and reliable infrastructure through
infrastructure-as-code, configured and deployed with an automated pipeline.

Then you should migrate to hybrid components, like an orchestrated container solution, to
support a “Function-as-a-Service” deployment model. These can be implemented at a lower cost,
can be continuously optimised and will enable a longer term re-architecture to a serveless model.

Ultimately, the higher levels of cloud maturity offer compelling benefits:

● Developer effort can be redirected from the overhead of managing ‘plumbing’ to adding
business value or delighting customers.

● Cost efficiency is achieved by the metered usage of easily scalable resources.

● Decomposition of services means they can be updated quickly and optimised individually.
They can also be distributed geographically to increase reliability or reduce latency.

From Cloud Naive to Cloud Native - 5

Cloud Maturity Ladder

Many organisations have had lacklustre experiences with cloud - failing to see the benefits and
cost savings they expect. In a 2019 paper from Unisys, 39% of businesses in Australia rated their
cloud migration as “below expectations”.

This is mainly because many treat public cloud services as ‘just another data centre’ - which
fundamentally misses the point. Public cloud services evolved because existing data centres
required a level of overhead and toil that companies like Amazon or Google could not sustain.
Modern public cloud services all feature a layered service model designed to remove as much of
the ‘undifferentiated heavy lifting’ as possible.

A failure to appreciate and leverage higher levels of cloud services will deliver disappointing
results. Accessing these higher levels means gradually changing processes, capability and
tooling in a methodical way over time.

Cloud Naive Cloud Optimised Cloud Native

Tooling Common tooling across
cloud & on-prem.

New services built in the cloud
with tooling selected to
match, with an eye on longer
term evolution.

Tooling optimised for target
environments based on factors
such as cost, performance and
scale.

Deployment Infrastructure
provisioning separated
from application
deployment and based
on service requests.

Self service provisioning.

Optimised deployment to
reduce lead times.

Deployment in smaller
batches to ‘lower the water
level and expose the rocks’.

Deployment straight to
production with zero down
time utilising feature flags to
separate release from deploy;
immutable infrastructure, all
deployed ‘as-code’; canary
releases; automated rollback.

Components Compatible managed
services used as a
drop-in replacement for
existing components.

System redesigned to support
chosen tenancy model.

Strangler pattern* used to
migrate remaining services to
managed or cloud native
alternatives.

System redesigned to event
driven architecture.

Hybrid FaaS architecture, with
Lambda for deployments.

Serverless PAYG cloud services
to minimise costs.

Service
Optimisation

Optimisation based on
simple t-shirt sizing,
results in unused
capacity over time.

Redesigned for horizontal
scalability. Supports scale to
zero where appropriate.

Only cloud native services for
cloud components - no servers.
Service is self optimising and
self healing.

Cost Model Resource based Usage based

(wherever possible)

Economics measured on a
service-by-service basis.
Refactoring for cost savings.

Cost
Optimisation

Basic utilisation and cost
tracking. Focus is on
fixed capacity planning,
using things like reserved
instances.

Resource allocation is
optimised based on usage.

Savings maximised on static
resource usage.

FinOps - automated cost
monitoring and real time
optimisation of costs.
Experiments in refactoring to
minimise TCO or improve
reliability and performance.

*Strangler Pattern - an architectural pattern that uses a facade or message tap to duplicate traffic to a service as a means
to rewrite that service in place. Named after the Australian strangler fig.

From Cloud Naive to Cloud Native - 6

https://www.unisys.com/Style%20Library/Unisys/cloudbarometer/pdfs/Report_UnisysCloudSuccessBarometer.pdf
https://docs.microsoft.com/en-us/azure/architecture/patterns/strangler-fig
https://martinfowler.com/bliki/StranglerFigApplication.html

Tenancy Model
The tenancy model is a key decision and determines the approach for managing the overall cloud
footprint and in determining the architecture of the rest of the application. Tenancy refers to the
number of customers that share resources at any given level of the application stack.

As with all design choices, there are tradeoffs to be made:

Single Tenant Single compute instance (eg. server, container, VM) per customer.

Single data store or database per customer

All services and infrastructure are configured on a per customer basis, with
complete segregation from any other customer.

Hybrid Tenant Shared compute orchestration platform (e.g. Kubernetes cluster)

-or- Shared data service (e.g managed database) but segregated data.

Multi Tenant Shared compute & data instances (eg. microservices cluster, managed database)

All services and infrastructure are shared between customers, with security
policies and authorisation flows defining access control.

At a high level, the differences between multi and single tenant are:

Multi Tenancy Single Tenancy

Scalability ✅ Potentially unlimited scale ❌ Scale capped by cost and effort

Cost ✅ Economies of scale ❌ Cost scales linearly with number of
clients, effort scales exponentially.

Utilisation ✅ Much better resources utilisation ❌ Duplicate resources per client.

Speed ✅ Faster deployment of changes ❌ Complex, burdensome release cycle

Segregation ＝ Segregation handled within the application
and data layers.

＝ Segregation based on infrastructure
configuration.

Customisation ❌ Customisation possible through config,
but limited by shared model

?? Easily implemented, but increasingly
costly as customers scale.

Blast Radius ❌ Wide blast radius, requires discipline ✅ Small blast radius,

Complexity ❌ More complex application architecture ✅ Simplified application architecture

A hybrid model is a choice based on how far along the scale is appropriate for your requirements.
For example, resource utilisation may not be a concern, so deploying distinct infrastructure per
customer may be feasible, but it will have significant cost implications.

From Cloud Naive to Cloud Native - 7

Cloud Governance Strategy
Part of the benefit of cloud services is through distributed self-service models of delivery, (i.e.
teams can provision the resources they need through self service-automation). This avoids
delays and bottlenecks and enables speed, experimentation and innovation.

However if you deploy self-service options but retain a centralised governance structure then it
will become a bottleneck which will throttle your productivity. The answer is to develop a rules
based approach which delegates authority appropriately in line with your business objectives.

Your cloud governance model should be layered, with appropriate controls at each level:

Cloud Foundations
Organisational Guardrails Cost and billing, organisational policies and universal security controls.

Network design & connectivity Network design including connectivity to on-premise (if required).

Account topology Grouping using organisational units and accounts as workload boundaries to limit
blast radius (see below).

Identity Management and
Access control

Federated identity management, zones of control and access role definitions
provide layered access controls.

Workload Design
Account vending

(inc guardrails)
Incorporating guardrails into the (automated) account vending process ensures
workload controls are deployed automatically at creation.

Infrastructure deployment Deploying infrastructure-as-code via automated pipelines (possibly self service)
ensures consistency and control and minimises ‘drift’.

Application deployment The deployment of applications and services should be automated to the highest
extent possible using cloud based services.

Compute & storage options Cloud services offer numerous choices for both compute and storage, with costs
and benefits. Principles governing their use should be established to ensure
business goals are met.

Operational Design
Cloud operating model Moving to the cloud represents a unique opportunity to redesign organisational

responsibilities to provide a more flexible, but secure operating environment.

Monitoring, logging &
observability

Visibility and transparency of activities and operations is key to ensuring control is
achieved and exceptions are minimised.

Capacity planning and resource
optimisation

The cloud brings new challenges and opportunities in capacity and demand
management

Resilience, disaster recovery &
business continuity

Flexible, on-demand resources mean higher levels of resilience can be achieved at
lower cost, but only by adopting cloud native principles.

From Cloud Naive to Cloud Native - 8

Organisational Guardrails
Guardrails are categorised into:

1. Preventative Controls: prevent security events from occurring
2. Detective controls: detect security events when they occur
3. Remediation controls: react to security events to minimise their effect in a timely manner

Defense-in-Depth
Cloud foundation controls and guardrails are applied at a number of layers:

● Baseline controls: These are guardrails that you wish to apply to all accounts, plus any
accounts you create in the future

● Core patterns: These are patterns you wish to apply to the organisation, but what you
apply and where may vary. Examples include:

○ Security cross-account roles
○ Central log auditing
○ Shared networking

● Workload patterns: These are patterns you wish to apply to a particular type of workload.

Typical organisational guardrails that should be enabled include:

● Geographic controls that limit where workloads can be spun up (preventative/baseline)
● Prevent public access to object storage (preventative/baseline)
● Whitelist allowed services in workload accounts (preventative/core pattern)
● Enable detective controls like AWS Guard Duty across all accounts (detective/baseline)
● Enable budgets and thresholds (detective/core pattern)
● Automatically enable logging for new accounts & services (detective/core pattern)

From Cloud Naive to Cloud Native - 9

Account Topology

There are multiple ways to set up AWS accounts within an organisation and costs and benefits to
each approach. Note that an account structure is related to the tenancy model you select - the
account model determines access and blast radius at the infrastructure level, while the tenancy
model determines shared dependencies at the application level.

For example, a multi-tenant application could be spread across multiple accounts, with each
account being geographically dependent (i.e. all the customers in a specific region).

In general follow these principles:

● Group workloads based on business purpose and ownership
● Apply distinct security controls by environment and risk profile
● Constrain access to sensitive data
● Limit the scope of impact from adverse events
● Promote DevOps operating models where all the resources required to build and operate a

workload are located within an account group which is available to a single team

Recommended Account Structure

Using AWS Organisational Units, you can further refine the structure of your account model:

Cloud Governance team Development & Operations teams

Core Core-ext Quarantine Workload Sandbox

Security
logging and
audit

Cloud ops and
workload
management
via shared
services.

Holding area for suspended
accounts, prior to closure.

Break-glass lock-down controls
in case of a breach.

Prod/staging pairs of
accounts per team to
limit blast radius but
enable delivery of
value.

For experiments
to encourage
innovation and
cloud capability
maturity.

From Cloud Naive to Cloud Native - 10

DevOps Ways of Working

DevOps provides developers agility so they can deliver value to customers through the rapid
delivery of software.

In principle this means an account per workload or application.

This has a number of benefits:

1. Using a separate account per team or per product limits the blast radius of issues with
that product to that product. For example, a change in the deployment pipeline or access
controls for a particular product could bleed over into other products within the same
account; a mistake in a deployment script could deny services to all applications which
share the deployed services. Account separation prevents this.

2. Further a separate account per workload makes that workload portable. Because
accounts are effectively self-contained, if a workload ever transitions between teams, or
teams are amalgamated, then you only need to handover the keys to that account and
they have everything they need to develop and operate that workload.

3. Finally tooling can be specific to the workload. This allows development teams the
flexibility to choose their own stack, tools and methods, further increasing their agility.
Centralised platform or tooling teams often become bottlenecks in their own right.

From a business perspective the separation of accounts allows costs to be tracked on a
per-project/product basis. This enables investment decisions to be made with a much clearer line
of sight to the operational costs associated with each system, and to consequently measure
against benefits. It also allows direct comparisons between products and enables experiments to
improve throughput within a particular product chain.

When managing large numbers of VMs, running COTs software, it is recommended to host these
within an account per environment: such applications have minimal inter-dependencies and are
usually managed by a centralised IT team - the overhead of managing multiple accounts
outweighs the benefits in this instance. A "shared services" account is useful for these purposes.

Sandbox Accounts

Sandbox accounts provide a cloud playground to promote experimentation and capability
development. Sandboxes can be assigned to individuals; pooled or shared within teams.

‘Innovation budgets’ using budget alerting is a simple way to manage costs without onerous
approval processes: allocate an approved spend for experimentation. If the limit is exceeded,
further approval or cleanup of unused resources is required.

Sandboxes should be fully isolated with no access to sensitive data - they are for experimentation
purposes only.

From Cloud Naive to Cloud Native - 11

Cautionary Tales from the Field

Given our experience with clients we have seen a number of examples where poor account
structures have severely limited their ability to utilise cloud services.

1. A large enterprise client with a single AWS account and a dozen teams would hit service
limits on a monthly basis (e.g. network service limits) and while these are soft limits that
can be altered, each time teams lost multiple days diagnosing and resolving issues
through support channels.

2. A smaller client ran all their workloads in the same account. Consequently there were
multiple instances where developers deleted resources by accident. The most significant
was where a developer accidentally deleted a production database table. Although it could
be easily restored, it represented unnecessary risk, anxiety and effort.

3. We have experienced many examples of clients with multiple tenants or workloads in the
same account where one team has deleted or reconfigured a shared resource (like a VPC
endpoint) or even mistaken another team's services for their own and broken multiple
systems, including production. Accounts offer a clear boundary for delineation that aligns
well with team and product boundaries.

4. A smaller client migrated on premise VMs to the cloud. The COTS nature of many
products and the fact that applications were managed by a centralised support team led
to the workloads being co-located in a single “service” account with guardrails. In this
instance, separating each VM into a separate workload account would have added
unnecessary management overheads.

From Cloud Naive to Cloud Native - 12

User Access and Identity Management

Manage access and identity centrally using a federated model based on existing organisational
directory services. Replicate on premise directories to the cloud as a preparatory step, e.g using
Azure AD, to support a modern standards based approach and phased migration.

SAML and OpenID Connect (OIDC) reduce vendor lock-in and support the use of Single Sign On
(SSO) services.

Design Role Based Access Controls (RBAC) or Attribute Based Access Control (ABAC), to align
user permissions with your organisational policies, mapping to the native Identity Management
controls of your cloud provider. Manage system-to-system access control using cloud native
controls to eliminate the need for secrets management and enforce a least-privilege model.

In general, we recommend:
● Simple, light touch controls to reduce management overheads
● Empowering users over controlling their actions
● Auditing and engagement over prevention and approvals
● Delegate permissions to minimise handoffs, and maximise flow:
● Separating responsibilities through peer review (PR) rather than job functions
● Avoid manual error by automating flows wherever possible

An effective identity management policy is important to control the organisational risk of
unauthorised, or malicious, access. However, a one size fits all policy is not appropriate as
complex identity management policies are overly restrictive and costly to maintain. As an
organisation grows and the number of projects and value increases, the risk associated with a
permissive structure grows.

Organisation Risk/Challenge Mitigation Zone of Control

A compromised user account
has access to multiple accounts

Segregate account access based on team role. Team membership,
mapped to account access.

Users have permission not
required for their function

Maintain user groups/attributes based on job function. Job function / account
permissions

User permissions are abused Maintain an audit log of activity for post-mortem
analysis

Audit / Monitoring

Multi account strategy makes
identity management difficult

Automate self-service provisioning and group access.
Centralise identity management and apply consistent
onboarding/offboarding process.

Self service provisioning
Personnel management
processes

Increased complexity with
multiple accounts and complex
organisational hierarchy

Avoid tightly coupling the account strategy to the
existing business unit structure. Avoid complex (deeply
nested) organisation hierarchies. Align accounts with
services provided and the teams responsible for them.

Team/Organisation
membership

Privilege escalation Control access to creation of users and roles, and
associated permissions.

Permission Boundaries /
Service Control Policies

From Cloud Naive to Cloud Native - 13

Continuous Flow of Value
While the foundations of networking, accounts and infrastructure are essential they should be
regarded as ‘plumbing’ which supports the true value of your digital enterprise – the applications
that business users and customers require.

To that end, not only should the foundations be designed to operate with as little overhead as
possible, they should be designed to support a flow of value in your organisation. They should be
designed to allow the rapid and easy deployment of changes to infrastructure & applications.

The State of DevOps Report from Devops Research Associates (DORA) has directly linked
Software Delivery and Operational (SDO) performance with organisational performance metrics
like profitability and speed to market.

Further the report clearly identifies four key metrics which are proven to drive Software Delivery
and Operational performance :

In order to maximise the long-term value you derive from your transition to a cloud architecture,
you should:

1. Collect historical data for these metrics based on your pre-cloud baseline
2. Design your software delivery architecture with an eye to a step change improvement
3. Build automated collection and measurement for each metric into your cloud reporting
4. Set short and medium term improvement goals for each metric
5. Implement small scale experiments as ‘proof of value’ evaluations
6. Roll out successful experiments horizontally throughout your organisation
7. Go to step 4 and repeat.

From Cloud Naive to Cloud Native - 14

https://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-of-devops-report

Infrastructure Deployment Patterns
The manual process of deploying, configuring and operating temperamental hardware has been
largely replaced by commodity scale ‘infrastructure provisioned ‘as-code’ (IaaC).

The automation of infrastructure provisioning offers many benefits:

● Enables rapid provisioning and tear-down so environments can be ‘on-demand’
● Ensures consistency between deployments, removes manual error
● Improves consistency between different environments and reduces ‘configuration drift’
● Reduces risk by eliminating over-privileged manual access

The use of automation leads to ‘immutable infrastructure’ - where infrastructure is always
recreated from a defined set of rules (code) when it is required. Changes are always applied to the
defined rules and never to the deployed infrastructure. The opposite of immutable infrastructure
are ‘snowflake servers’, where each server is complex and unique.

Use a centralised Version
Control System

Once you have adopted ‘infrastructure-as-code’ you can control changes to
infrastructure through the same mechanisms used for software - a version control
system. This allows engineers to collaborate on changes and adopt rigorous
software engineering practices like code reviews and automated testing. Ideally
the infrastructure code should be controlled alongside application code to ensure
the two are deployed in sync and to avoid unintentional configuration drift.

Account factory The basic workload boundary in the cloud is an ‘account’. Organisations should
have many accounts, separated on a logical basis and provisioned automatically,
including the appropriate guardrails. By customising guardrails and infrastructure
based on the target workload you can create an account ‘factory’ which allows
teams to provision their own accounts.

Product catalogues An analog to an account factory is a ‘product catalogue’ where various workload
infrastructure patterns (e.g. a serverless web application) can be stored, along
with appropriate security controls. Teams that have created accounts can then
self-service infrastructure provisioning from an approved set of patterns.

Modular Infrastructure Code Instead of defining your workload infrastructure in a single bit script, design
individual modular components that can be deployed in the correct order to build
different services. Abstract configuration details into variables or parameters to
ensure flexibility.

Apply Automated Testing
Patterns

Continuous integration and delivery (CI/CD) in software relies on automated
testing to verify correctness. The same principle can be applied to infrastructure.
Use unit and integration tests to test the behaviour of deployable infrastructure to
ensure it conforms to the desired outcome (this is known as Behaviour Driven
Infrastructure or BDI, see Behaviour Driven Development or BDD for comparison).

Zero trust networking Zero trust networking eliminates trust from an organization's network architecture
and replaces it with a continuous assurance of trust. A zero-trust model considers
all resources to be external and continuously verifies trust relationships before
granting only the required access. This provides continuous protection from both
external and ‘internal’ resources (link).

From Cloud Naive to Cloud Native - 15

https://www.oreilly.com/radar/an-introduction-to-immutable-infrastructure/
https://martinfowler.com/bliki/SnowflakeServer.html
https://mechanicalrock.github.io/2016/12/21/introducing-infrastructure-mapping.html
https://mechanicalrock.github.io/2016/12/21/introducing-infrastructure-mapping.html
https://cucumber.io/docs/bdd/
https://aws.amazon.com/security/zero-trust/

Software Development Patterns
The following diagram is taken from the DORA State of DevOps Report. It depicts the strong
causal relationship between certain software development practices and Software Development
and Operational (SDO) performance.

These practices are fundamental to supporting the continual flow of value in a digital enterprise.

Continuous
Integration

Code changes that are not in production are an overhead that requires time and resources to
manage. They also represent an unknown risk until they are deployed and tested.To increase
reliability and reduce the lead time to production it is recommended that code changes are
merged into working software at least daily, if not several times per day (link).

Continuous
Deployment

The logical extension is to continuously deploy software changes into production. Note, this
does not necessarily mean that every change is immediately visible to users since the release
of functionality can be governed by configuration (feature flags). It will mean however that you
shorten your feedback loops, minimise rework and increase the reliability of your deployment
chain as you will repeat it frequently and deal with issues as they arise (link).

Blue/Green
Deployment

The use of continuous deployment and distributed compute models (like microservices)
enables changes to be made in real time with no outages. By adopting a blue/green
deployment model where compute nodes are gradually refreshed with code changes you can
seamlessly migrate your used base from one version of software to the next (link).

Canary Deployment A variation of the blue-green deployment model is the canary model where a change is
released to a subset of users. The change can then be evaluated in production and, if
successful, rolled out across the user base. This enables experimentation and innovation.

Trunk Based
Development

A fundamental development practice which enables continuous integration and deployment
is “trunk based development”. In TBD developers merge their changes into the ‘mainline’ or
trunk code several times per day. This encourages the integration of smaller changes, more
frequently, which in-turn enables continuous integration and deployment.

Evolutionary
Database Design

A limiting factor on deployment can often be database coupling which limits code changes as
the database is shared across versions of the software. To make this work design must be
treated as an on-going process that is interleaved with development, testing and delivery
rather than a separate step - this is known as evolutionary design. (link)

From Cloud Naive to Cloud Native - 16

https://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-of-devops-report
https://martinfowler.com/articles/continuousIntegration.html
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment
https://martinfowler.com/articles/evodb.html

Design for Continuous Operations
In order to provide an exceptional user experience, understanding how your systems behave and
proactively addressing issues before they escalate is crucial. Antifragile systems remove the need
for fire-fighting, enabling focus on new features and delivering value. Improved feedback loops
allow you to understand usage patterns and to ensure you focus on building valuable services.

Monitoring and Observability
Typically on-premise hardware and software assets are tracked via cumbersome methods like a
manual “CMDB” and logging and monitoring are an afterthought. With cloud computing much of
this comes for free and offers much greater transparency but careful thought must be put into its
design, configuration and deployment (generally automated).

Appropriate tools are required for observability, to provide Logging, Monitoring and Tracing to:
● Measure the Mean Time to Recovery (MTTR) and Mean Time Between Failure (MTBF)
● Reduce the time for problem identification (MTTI), and problem resolution
● Enable fault diagnosis, troubleshooting and continuous improvement
● Satisfy security requirements for logging and auditing

The following targets represent ‘best-of-breed’:
Problem Identification When a failure occurs, it should be possible to identify the cause of the failure within

10 minutes. When a failure occurs, it should be possible to perform analytics in order
to identify the root cause within 4 hours.

Alerting It should be possible to configure automated alerts to notify failures. It should be
possible to perform automated responses based on the alerts.

Access Control Application logs can contain sensitive information. It should be possible to configure
access control for managing access to logged information. Access log themselves
should be secured to only authorised individual

Delegated Responsibility Application teams need to be able to self manage and control access to logs on an
operational-needs basis.

Service Level Objectives and
Error Budgets

Applications can track and report SLOs to help determine where to prioritise
engineering work..SLOs include: MTTR; MTBF; latency, saturation, traffic, and errors.
Error budgets enable a calculation of acceptable failure and assist planning. If the
error budget is, or is likely to be, exceeded then remediation effort is required..

Application SLIs Service Level Indicators (SLIs) provide a measure of service based on user-centric
metrics: Successful request ratio, cache miss ratio, ratio of page loads < 100ms, etc.

Rules of Thumb
● Always ensure logs contain sufficient log event data to address the specific requirement
● Access logs should support both success and failure of specified security events
● Ensure log entries that include un-trusted data will not execute as code
● Do not store sensitive information, including session identifiers or passwords
● Log all apparent tampering events, including unexpected changes to state data
● Log attempts to connect with invalid or expired session tokens
● Log all administrative functions, including changes to the security configuration settings
● Use a cryptographic hash function to validate log entry integrity

From Cloud Naive to Cloud Native - 17

Disaster Recovery

Disaster recovery is the process of preparing for and recovering from a disaster. An event that
prevents a workload or system from fulfilling its business objectives in its primary deployed
location is considered a disaster. The aim is to mitigate risks and meet the Recovery Time
Objective (RTO) and Recovery Point Objective (RPO) for a particular workload.

For more detailed insight into disaster recovery in an AWS context read: Disaster Recovery of
Workloads on AWS: Recovery in the Cloud Whitepaper..

Recovery Objectives (RTO and RPO)

When creating a Disaster Recovery (DR) strategy, organisations most commonly plan for the
Recovery Time Objective (RTO) and Recovery Point Objective (RPO).

Recovery Point Objective (RPO) is the maximum acceptable amount of time since the last data
recovery point. This objective determines what is considered an acceptable loss of data between
the last recovery point and the interruption of service and is defined by the organization.

Recovery Time Objective (RTO) is the maximum acceptable delay between the interruption of
service and restoration of service. This objective determines what is considered an acceptable
time window when service is unavailable and is defined by the organization.

From Cloud Naive to Cloud Native - 18

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.pdf
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.pdf

Disaster Recovery Patterns in AWS

Disaster recovery strategies available to you within AWS can be broadly categorised into four
approaches. For traditional server based applications they represent a spectrum of cost and
complexity, but the higher levels are available to modern cloud native solutions at no extra cost.

It is also critical to regularly test your disaster recovery strategy so that you have confidence in
invoking it, should it become necessary.

Backup and Restore

Backup and restore is an effective approach for mitigating against data loss or corruption when
you have strong IaC practices. Consistent deployment pipelines and immutable infrastructure
enable environment recreation in hours.

In the event of a full region failure, services would be unavailable for the duration of the outage.
Your workload data will require a backup strategy that runs periodically or continuously and aligns
to meet your RPO.

Pilot Light & Warm Standby

These two strategies focus on multi-region failover scenarios whereby resources are standing by
in another region to be scaled up in the event of a failure. Strong IaC and DevOps practices will
enable environment recreation in the space of hours (pilot light) to minutes (warm standby).

Multi-site active/active

You can run your workload simultaneously in multiple regions as part of a multi-site active/active
or hot standby active/passive strategy. Multi-site active/active serves traffic from all regions to
which it is deployed, whereas hot standby serves traffic only from a single region, and the other
region(s) are only used for disaster recovery.

While multi-site active/active may seem complex and costly, if you architect your system to use
distributed scalable services (containers, serverless etc) then it can run in multiple regions
simultaneously and will provide the highest levels of resilience and continuity.

From Cloud Naive to Cloud Native - 19

